S.46 -

Code No.: 9A05603/R09

B.Tech. III Year II Semester Regular and Supplementary Examinations Set-4

April/May - 2013

OPTIMIZING TECHNIQUES

(Common to CSE and CSS)

Time: 3 Hours

Answer any **FIVE** Questions

All Questions carry Equal Marks

- - -

1. An experimenter has obtained the following equation to describe the trajectory of a space capsule:

 $f(x) = 4x^3 + 2x - 3x^2 + e^{x/2}.$

Determine a root of the above equation.

- 2. Find the relative extreme of $(x_1^2 2x + 4x_2^2 8x)_2$.
- 3. (a) What is the difference between slack, surplus and artificial variables? How do they differ in their structure and use?
 - (b) What is the difference between a feasible solution, a basic feasible solution and an optimal solution of a linear programming problem?
- 4. Determine the optimal solution for the following transportation problem.

		То		Supply
	3	8	5	5
From	5	5	3	8
	7	6	9	7
	4	9	5	14
Demand	7	9	18	

- 5. (a) State the Kuhn–Tucker conditions.
 - (b) The profit per acre of a farm is given by: $20x_1 + 26x_2 + 4x_1x_2 4x_1^2 3x_2^2$.

Where x_1 and x_2 denote, respectively, the labour cost and the fertilizer cost. Find the values of x_1 and x_2 to maximize the profit.

- 6. What is penalty function concept? Explain interior penalty function algorithm.
- 7. Consider the non-linear programming problem

Minimize $f(x) = x_1^{-1} + x_2^{-1}$.

subject to
$$h(x) = \frac{1}{2}x_1^2 + x_2^2 - 1 = 0$$

 $x_1, x_2 \ge 0$

Construct a full quadratic approximation to the problem at the point $x^0 = \left(\frac{3}{4}, \frac{3}{4}\right)$.)

8. State the Bellman's principle of optimality and explain by an illustrative example how it can be used to solve multi-stage decision problems.

B.Tech. III-Year II-Sem. -

-(JNTU-Anantapur)

Max. Marks: 70